• Tag Archives SETI@home
  • Listening to starlight: Our ongoing search for alien intelligence

    Six hours a day, seven days a week, for four straight months. That’s how long radio astronomer Frank D. Drake pointed the 26-meter telescope at the National Radio Astronomy Observatory (NRAO) research facility in Green Bank, West Virginia, toward the heavens, looking for signs of intelligent life beyond Earth. He dubbed his efforts Project Ozma, in honor of the Queen of Oz from L. Frank Baum’s famed children’s book series.

    Between April and July of 1960, Drake recorded some 150 hours of tape speckled with radio noise. While no meaningful encoded signals or patterns emerged from those readings, Drake still earned himself a place in history for performing what would become the first scientific search for extraterrestrial intelligence in the modern era.

    Since then, research organizations around the world have performed nearly 100 SETI (search for extraterrestrial intelligence) experiments. Even NASA got in on the hunt, working with the SETI Institute between 1988 and 1993, when Sen. Richard Bryan (a Democrat from Nevada) introduced an amendment that cut the program’s government funding.

    But as the next generation of telescopes come online, like the upcoming Webb Space Telescope or dedicated planet hunter the Kepler Telescope, the scientific community is beginning to warm to the idea of SETI as not just a valid scientific discipline but an essential one. “I think people are kind of coming around to the idea that SETI as a scientific endeavor is one that’s worth pursuing,” Croft added. Especially, “when we can answer a scientific question or attempt to answer the scientific question are we alone in the universe?”

    The SETI Institute of California is trying to do just that. The 33-year-old organization formed in 1984 with the mission of understanding the origins and nature of life in the universe. It employs 120 staffers, 75 of whom are PhD-level researchers, and conducts research among 22 fields of inquiry over seven branches of research: astronomy and astrophysics, geoscience, exoplanets and exploration, exobiology and SETI.

    For its SETI efforts, the Institute relies on radio and optical telescopes. On the radio side, the Institute leverages its Allen Telescope Array (ATA), a 42-dish setup located at Hat Creek Radio Observatory, nearly 300 miles Northeast of San Francisco. It can scan four octaves of radio frequency and generates roughly 55 terabytes of data every day. Unlike conventional radio telescopes used for radio astronomy, the ATA scans a broader swath of the radio spectrum, albeit at a lower sensitivity.

    The group is also working with Paul Horowitz, a physicist and electrical engineer at Harvard, to develop “all sky all the time optical SETI survey systems” where the ATA would perform wide surveys of the sky while other, more sensitive telescopes — like the Lick — would follow up with more focused surveys covering a smaller portion of sky.

    For its optical surveys, the Institute splits its time between the UC Berkeley’s Lick Observatory and the Harvard Haystack telescope. These telescopes are looking for laser emissions, specifically. These could be from any number of alien sources including communication arrays, weapon tests or transportation (hello, laser sails). “But in any case a monochromatic high-intensity highly focused coherent beam of light would be a fairly indicative sign of technology that could potentially be seen from very far away,” Bill Diamond, CEO of the SETI Institute explained.

    However, both the radio and optical instruments have noticeable limitations. While humankind is theoretically capable of blasting a laser beam into space that is 10,000 times stronger than the sun, Diamond continued, “there isn’t an instrument on Earth that can detect an Earth-like planet with Earth-like leakage of electromagnetic radiation.” This leakage refers to the general emission of radio signals a civilization gives off through its various technologies, rather than powerful, highly focused signals intentionally designed to get another planet’s attention. And while using overlapping technologies, as in the case of the SETI Institute-Horowitz collaboration, can boost our relative capabilities, it’s still not good enough to intercept complex communications that rely on, say, wideband carrier signals.

    “We don’t want to make too many assumptions about the kind of signals that an extraterrestrial civilization might be sending,” Croft said. “It might not be kind of a simple tone. You know a transmission which is a single frequency will have a drifting tone because it is on a planet that’s going around a star.” Who knows, maybe Frank Drake did find an alien message in that radio static but it’s encoded in a manner that researchers haven’t yet been able to identify and decipher. “They might be sending some kind of complicated data; we make all sorts of complicated transmissions ourselves as humans,” Croft concluded.

    This technological wall has spurned SETI researchers to seek out more effective means of scouring the galaxy. In the case of Berkeley’s Breakthrough Listen project, that involved securing a 10-year, $100 million funding grant from Yuri Milner, a Russian entrepreneur, and physicist Stephen Hawking. This money will be used to buy time on two of the world’s most powerful telescopes (the Green Bank in West Virginia and the Parkes in Australia).

    Over the past 18 months, the Breakthrough Listen Initiative has also teamed with the SETI@Home project, run by a team from UC Berkeley, to process a portion of the data generated each day. SETI@Home launched in 1999 as a means of distributing the computational workload that analyzing dozens of terabytes of radio signal data generated by the Arecibo telescope across hundreds of thousands of personal desktop computers. “Actually Berkeley and the SETI Institute have a long history together,” Diamond said. “Berkeley was involved with us in the very early days of developing the Allen Telescope Array, so we go back a long time. ”

    The program currently only has around 150,000 volunteers (down from a peak of 1.5 million users) and “we’re getting back into our problem again in that the telescope can generate far more data than we can analyze with the best sensitivity,” said Dr. Eric Korpela, head of the SETI@Home project.

    The Breakthrough Listen Initiative has a “pipeline” that divides 1 GHz of spectrum into 3hz channels (330 million in total) that are scanned for potential signals. You want the channels to be as narrow as possible in order to maximize the sensitivity, however, as both the Earth and whatever exoplanet the telescope is looking at move through their respective solar systems, signals tend to “drift” in frequency. “You want to use computer power to correct for that motion,” Korpela explained, although the process is incredibly CPU-intensive. But that’s exactly what SETI@Home is trying to do.

    However, even with the million-odd CPU cores at SETI@Home’s disposal, analyzing all that data is still slow going. Its volunteers only account for around 2 percent of the Breakthrough Listen Initiative’s analytical power. The program simply doesn’t have enough volunteers to keep up with the demand. And the fact that many people have ditched their desktops for mobile devices is not helping either.

    “It is an issue that we worry about,” Korpela admitted. “We do have an app for Android. The processors that are in a typical phone right now are not comparable with what are in most desktops, but they’re certainly better than a processor from 1999.” The app is currently running on 22,000 volunteer mobile devices, or around 15 percent of the total base. However, these devices are only contributing 2.3 TFLOP/s of processing, 0.5 percent of the program’s total computational power. As such, SETI@Home doesn’t face a technological hurdle in accelerating its search for intelligent extraterrestrial life so much as a societal one.

    “But given that there are a couple billion Android devices out there,” Korpela mused, “there are another 200 petaFLOP/s out there that we haven’t tapped yet.” The SETI@Home team hopes to garner new interest in their efforts when they release their report from the Breakthrough Listen Initiative this fall.

    Source: Listening to starlight: Our ongoing search for alien intelligence


  • Stephen Hawking Joins Russian Entrepreneur’s Search for Alien Life

    Extending his idea of philanthropy beyond the Earth and even the human species, Yuri Milner, the Russian Internet entrepreneur and founder of science giveaways like the annual $3 million Fundamental Physics Prizes, announced in London on Monday that he would spend at least $100 million in the next decade to search for signals from alien civilizations.

    The money for Breakthrough Listen, as Mr. Milner calls the effort, is one of the biggest chunks of cash ever proffered for the so far fruitless quest for cosmic companionship known as the Search for Extraterrestrial Intelligence, or SETI. It will allow astronomers to see the kinds of radar used for air traffic control from any of the closest 1,000 stars, and to detect a laser with the power output of a common 100-watt light bulb from the distance of the nearest stars, some four light-years away, according to Mr. Milner’s team.
    It also guarantees bounteous observing time on some of the world’s biggest radio telescopes — a rarity for SETI astronomers who are used to getting one night a year.

    “It’s just a miracle,” said Frank Drake, an emeritus professor at the University of California, Santa Cruz, who joined Mr. Milner and others, including the cosmologist Stephen Hawking, in a news conference Monday at the Royal Society in London.

    Dan Werthimer, a longtime SETI researcher at the University of California, Berkeley, said, “This is beyond my wildest dreams.”

    In a prepared statement at the announcement, Dr. Hawking said atoms and the forces of nature and the dance of galaxies could explain the lights in the sky, but not the lights on Earth. “In an infinite universe there must be other occurrences of life,” he said. “Or do our lights wander a lifeless universe? Either way, there is no bigger question.”

    Mr. Milner also announced a $1 million competition, called Breakthrough Message, to create messages that could be sent if we knew there was anybody out there to receive them.

    These could be propitious times for ET. The relentless improvement of electronics and computing power have made it possible to build receivers 50 times as sensitive as before, relieving astronomers of the need to guess what channels an extraterrestrial being might broadcast on. The astronomers can listen to all of them at once.

    NASA’s Kepler spacecraft and other hunters of planets circling distant stars have determined that there are billions of possible habitats for other beings in our galaxy.

    Dr. Drake started it all in 1960 when he pointed a radio telescope at a pair of sunlike stars hoping to hear a “hello.” He heard nothing, which has pretty much characterized the effort ever since.

    No amount of cosmic silence, however, has been able to discourage astronomers who theorize that radio signals can bridge the gulfs between stars more cheaply than spacecraft, allowing distant species to communicate by a sort of cosmic ham radio or galactic Internet. And, they note, only a few thousand of the Milky Way’s 200 billion stars have been sampled, on only a few of the billions of possible radio channels — a minuscule piece of what they call the “cosmic haystack.”

    A simple squeal or squawk, or an incomprehensible stream of numbers by a radio antenna pointed at one of those stars, would change history.

    “We have a responsibility to not stop searching,” Mr. Milner said in an interview. “It should always be happening in the background. This is the biggest question. We should be listening.”

    Mr. Milner has recruited a small coterie of scientists to run the project. Among them are Martin Rees of Cambridge University, Britain’s astronomer royal, who will lead an advisory group; Peter Worden, former director of the NASA Ames Research Laboratory, home of the Kepler effort; Geoffrey Marcy of the University of California, Berkeley, a renowned exoplanet hunter; Dr. Werthimer; Andrew Siemion, also of Berkeley; and Ann Druyan, a co-author of both “Cosmos” television series and widow of the astronomer Carl Sagan.

    According to Dr. Werthimer, about a third of Mr. Milner’s money will go toward building new receiving equipment, and about a third will go toward hiring students and other astronomers.

    The rest will be used to secure observing time. For now, that effort will include two of the largest radio telescopes in the world: the Robert C. Byrd Green Bank Telescope in West Virginia and the Csiro Parkes Telescope in New South Wales, Australia.

    Both have had financial troubles in an era of flat budgets, and have been seeking partners to help keep the observatories running. Mr. Milner has agreed to underwrite 20 percent of the cost in return for 20 percent of the observing time.

    “We could never get enough telescope time,” Dr. Drake recalled. “Yuri can fix that with the click of a pen.”

    Dr. Werthimer, who will oversee the analysis of data, said it would be open to all, including the nine million users of SETI@home, a free screen saver program that processes SETI data in the background.

    Source: Stephen Hawking Joins Russian Entrepreneur’s Search for Alien Life – The New York Times